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Abstract. It is shown that if quantum electrodynamics is assumed to be manifestly gauge 
independent and path independent then electric charge must be quantized. 

1. Introduction 

Mandelstam (1962) has formulated a manifestly gauge independent quantum electro- 
dynamics in which the electromagnetic vector potential A ,  never need be introduced. 
The gauge invariant field variables at x for a spinless particle with charge q1 are 

-x 

and 

where the integrals are taken over the space-like path P from - cc to the field point x. 
The operators 4 and q5* satisfy the usual equations 

and 

We use natural units with h = c = 1. The choice of - cc as the ‘fixed point’ from which 
phases are calculated is arbitrary. Any other point would do as well. 

The price that one must pay for manifest gauge independence is the path dependence 
in (1) and (2) .  Mandelstam argues that the path dependence is fundamentally connected 
with the arbitrariness in the choice of phase factors in the operators of charged fields. 
This path dependence which renders the field variables non-local is a very unpleasant 
aspect of the theory. A formalism which is both manifestly gauge independent and path 
independent would be more desirable. We would like to show that requiring the theory 
to be path independent gives results consistent with experiment and provides a very 
natural explanation of charge quantization. 
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2. Path independence 

Consider a charge q ,  associated with the field @(x, P). Let PI and P2 be two paths to the 
field point x from - CO. These paths are the same everywhere except between the points 
x 1  and x2 where they are separate (see figure 1). Path C is the closed path P2 - P I .  The 

Figure 1. Diagram showing the closed path C = P,-PI and the paths P, and P,. The 
charge q 1  is associated with the field @(x, P), Various segments of the curve are labelled with 
symbols in parentheses denoting those paths which follow that segment. x I , x 2 ,  and x 
denote points. 

theory will be path independent if and only if 

@(& P1) = @(x, P2) 

@*(x, P,) = cD*(x, P2) 

( 5 )  

(6) 

for all space-like P1 and P2. We could alternatively require 

which would lead to the same results below. Now 

- w  -cc 

where the exponential can be written in factored form on the right of (6) from the 
Campbell (1898), Baker (1902, 1903, 1904), Hausdorff (1906) theorem and the fact that 

(8) 
for x-y non-timelike and arbitrary space-like paths P, and P, from Mandelstam (1962). 
(8) implies in particular 

[@.(x, PI), WY, P2)l = 0 

- m  - m  

from which (7) follows. From (7) we see that ( 5 )  will hold if and only if 

(9) 

Alternatively following Cabibbo and Ferrari (1962) we can dejine the path dependence 
of the field quantities in terms of the electromagnetic field tensor Fvy as 

@(x, P2) = @(x, P,) exp ( - -tl Fuy do*') 
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where S is a surface delimited by the closed path C .  An application of the relativistic 
generalization of the Stokes theorem then leads to (10) directly if we are to have a path 
independent formalism. 

Now if A ,  is a classical field (10) holds if and only if 

where I I  is an integer. If A, is a quantum operator, (10) is satisfied in operator form if all 
the eigenvalues of fc  dt,,A,(l) are integer multiples of 2n/q1.  In this case (12) will be 
understood in the following to be shorthand for an operator-eigenvalue equation. (10) 
is sufficient as well as necessary for path independence because all paths originate from 
the ‘same point’ at - cx; by definition. We note that 

is sufficient but not necessary for the formalism to be path independent. (13) holds only 
if A,, , , -  A,,, = 0 which is the uninteresting case with electromagnetic field zero. For 
nature to satisfy ( 1  2)  for arbitrary space-like contour C requires quantized behaviour 
of some sort. A physical example which shows that behaviour like this is possible without 
the introduction of magnetic monopoles is provided by the quantization of flux in 
superconductors. In this case, the flux quanta are just given by (12) with A ,  = 0 and 
q1  = 2e, the charge on a Cooper pair. If the phase were a continuous functional of C ,  
n would have to be zero on the right of (12) because the integral would vanish as C 
shrinks to a vanishingly small loop. 

Now consider a second charge q2 associated with the field Y(x’,  P‘) with the field 
point given by x’. The field variables are defined analogously to those for q l ,  ie 

-a 

I f  we insist that this is also path independent we must have 

Y(x’ ,  Pi) = Y(x’, Pi) (15) 
for all space-like Pi and Pi. In particular let us choose Pi the same as P, from - cc 
to point x3 from which Pi then proceeds to the field point x’. Pi will similarly coincide 
with Pz as far as x3 and then proceed to  x’ (see figure 2). Repeating the analysis above 

Figure 2. Diagram showing the paths P,, P,, Pi, and Pi.  Charge q1 is associated with the 
field Wx, P) and charge q 2  is associated with the field Y(x‘. P). Various segments of the curve 
are labelled with symbols in parentheses denoting those paths which follow that segment. 
x l .  x 2 ,  x3 ,  x, and x’ denote points. 
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then gives the result that (15) holds if and only if 

where m is an integer. The integral in (16) over the closed path C is the same as the 
integral in (12) from the way we chose our paths. (12) and (16) however imply that for 
two arbitrary charges q1 and q2 we must have 

where n and m are integers. (17) implies that any arbitrary charge can be written as an 
integer times some fundamental unit of charge e. Thus charge must be quantized with 

q1 = +ne 

and 

q2 = +me. (18) 

Furthermore (17) requires that charges of both sign exist. Thus charge is quantized if 
quantum electrodynamics is assumed to be manifestly gauge independent and path 
independent. We have not shown the converse. 

3. Discussion 

It is interesting to note that it has been proven that electric charge must be quantized 
if a magnetic monopole exists anywhere in the universe. This idea originated with Dirac 
(1931) and has received considerable attention since (see Ross 1969 for further references). 
Let us look at this magnetic monopole work briefly since it is closely associated with our 
work above. 

Dirac (1931, 1948) formulated the theory of magnetic monopoles in terms of a string 
of singularities in the vector potential extending from the magnetic monopole to infinity. 
Requiring the wavefunction of a particle of charge e to be well defined when the gauge 
associated with the vector potential of the magnetic pole g is transformed leads to a 
quantization of the product eg. Necessary for this is the requirement that a string never 
pass through a charged particle, the so-called Dirac veto. Cabibbo and Ferrari (1962) 
have formulated magnetic monopoles in terms of Mandelstam’s path dependent field 
quantities with no strings of singularities present. They introduce path dependent 
field quantities for both the electric and magnetic charges. For self-consistency (1 1) 
above must be independent of the surface S .  This gives 

exp( --; J 
closed S 

which leads again to quantization of eg using Gauss’s theorem if avpv;,, = g, where ppv 
is the dual tensor and gp the current associated with the magnetic monopoles. The Dirac 
veto becomes the statement that the paths associated with electric particles cannot cross 
those associated with the magnetic particles. Cabibbo and Ferrari’s work can be made 
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consistent if this requirement is made (Wentzel 1966, Ross 1969). In our work above the 
assumption of path independence gives 

ex p(  - % JOpen FNy doNv) = 1 

from (1 1). (20) leads directly to (10) and to charge quantization as above. (20) is a more 
severe mathematical requirement than (19) but does not require the existence of magnetic 
monopoles to give charge quantization. The present work thus shows that the require- 
ment of the existence of a magnetic monopole can be replaced with the assumption of 
path independence of the formalism. This is an attractive possibility since magnetic 
monopoles have never been discovered. We require of nature that she satisfies (12) with 
the proper quantum behaviour rather than that she produces a magnetic monopole. 

The important relation (12) which holds if and only if the theory is path independent 
is not easily amenable to experimental verification. The reason is that (12) involves an 
integral around a closed space-like path. Physical particles such as electrons, on the 
other hand, always follow time-like paths. If (12) is ever found to be violated for any 
closed space-like path C and any arbitrary electromagnetic field, path independence will 
be disproven. This is a stringent requirement. 
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